So our goal is to get one of these precise B patterns: 1-1, 1-2, 2-1 and 2-2.

Of course we start the betting when a 1 or a 2 happen.

Since we utilize a mini progression as 1-2 or 100-150 or 100-120, etc. to be ahead of something we need to win right at the first attempt; if we lose this very first attenpt, odds are strongly shifted toward NOT getting any kind of profit as the average number of the searched patterns is four.

(for example, after a L we can only break even with a subsequent WWW sequence)

Nonetheless, we can choose to make our first bet right on the second searched pattern when the first pattern produced a loss, that is betting to get a LW situation.

Since itlr the overall number of L outweigh the number of W (in term of units won/lost), we could test large datasets to see what's the most likely losing pattern distribution.

After all, Banker 3+s are more likely because asym hands come out in finite numbers, mostly clustered.

Hence we do not want to fall into the trap of looking for a positive pattern whenever the first two patterns are LL or risking to cross an unfavourable WL spot.

This is not a stop loss or stop win concept, just a cumulative study on what are our best chances to win at EV- propositions.

After all we can't win less than one unit (or a portion of it) and since we're flat betting we do not want to chase losses when the actual shoe had shown a "negative" propensity from the start. (As we need at least a triple number of W to balance a single L)

On average and choosing to adopt a super selected strategy (waiting shoes forming a first L), we are going to bet nearly 25% of the total shoes dealt.

Moreover, not every shoe will form a four (or greater) WL pattern, some of them stops at two and three (and sometimes only one W or L situation arises).

Why such strategy should enhance our probability to win?

Like other binomial games, most part of bac results are formed by singles and doubles, In three hands dealt, only two patterns over eight form triples (odds 2:8.), the remaining part includes singles and doubles.

Bac rules from one part raise the probability to form 3+s (Banker) and the opposite is true at Player side favoring singles and doubles.

Anyway, this math propensity comes out just one time over 11,62 hands dealt and sometimes it will shift the results very slightly. Not mentioning that some card distributions favor Player side even in asym spots.

Many bac players tend to emphasize too much the less worse 0.18% Banker return, this simple strategy (along with some additional adjustments I do not want to discuss here) shows that we can concede the house the higher advantage; let the house hope everytime we'll make a rare bet an asym hand will come out precisely on that spot.

as.