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1.  Spencer-Brown’s Critique of ProbabilityIn the 1950’s, experiments in extra-sensory perception (ESP) were still novelenough that they could be written up in Nature and other reputable journals.However, several decades of work on the subject had so far failed to produce aconvincing demonstration of a stable talent for clairvoyance or telepathy or anyother variant of ESP, and hopes were fading that any would be found.George Spencer-Brown, who did his post-graduate work under both BertrandRussell and Ludwig Wittgenstein, considered the possible reasons for the failureof ESP experiments and turned them into a novel critique of the classicalfoundations of probability. His argument first appeared in Nature in 1953, then asa monograph, Probability and Scientific Inference (1957).The puzzle, as Spencer-Brown observed, wasn’t that ESP experiments wereunrepeatable. It was that they failed to be repeatable in much the same way everytime. Their failure was itself a predictable pattern. Initially the subject would scorewell above chance, but after a few dozen trials, or a few hundred, the margin ofsuperiority and the significance of the subject’s score would both sink. Eventuallymany subjects lapsed into ‘psi-missing,’ that is, their rate of successful guessingwould be not at, but rather significantly below the rate predicted by classicalchance. According to ESP researcher Robert Thouless, such declines had beenobserved since sometime in the 19th century:It is not easy to give a date for the first discovery, although they were first singled outas a significant feature of the ESP response by Rhine in his 1934 book Extra-Sensory Perception. They had, however, been noticed earlier. Of the Creery sisters,for example, it was reported that ‘the average of successes gradually declined’(Gurney et al., 1886). A similar decline was also pointed out by Estabrooks in anearly study of ESP (Estabrooks, 1927). Since then, decline effects (both episodic andlong-period) have been found by so many workers that one must regard decline asone of the best attested and most often repeated observations in ESP research.The accepted explanation for this pattern (among scientists who were not ESPenthusiasts) was the ‘file drawer’ effect, in which successful experiments withhigh significance were reported, but unsuccessful ones with low significance weresimply tossed aside or put in a file drawer.  Extending or repeating the occasionalhigh-significance result would prove impossible and average scores would appearto decline, but overall, there was no such thing as a decline in guessing ability.Section on Statistical Education – JSM 2010
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                          ESP surplus hits with increasing number of trials (Rhine 1940)0.1%1.0%10.0%100.0% 10 10,000 10,000,000Total trials (all subjects)Percent surplus hits ActualDecline modelIn 1940, Joseph Banks Rhine constructed a table summarizing dozens of differentESP experiments. Rhine was and remains today the best-known writer on thescientific study of ESP. The purpose of Rhine’s meta-analysis was to comparevarious test schemes to see which succeeded best at delaying the eventual lapse ofthe subject’s talent. What is interesting is that if we simply take the entire set ofresults, and plot the decline of significance on a log-log scale, we get somethingclose to a straight line, as shown above. This doesn’t follow in any obvious wayfrom the ‘file drawer’ effect.Spencer-Brown hypothesized that the failure to find convincing evidence of ESPironically exposed a real scientific puzzle worth solving. If there was no ESP, thenthere must be something lacking in probability theory.This is quite plausible in light of the fact that psychical research is perhaps the onlypresent-day science which has looked for something (not already known to exist) forsixty years and failed to find it; and if it happened that what it was looking for did notexist, we should have in effect sixty years of pure probability experiments which there isno reason to suppose should have fared, in terms of significance, better than the best(and the worst) of all the pure probability experiments down the ages. It would thus beits remarkable additions to our experimental picture of pure probability for which weowe the most thanks to modern psychical research.Section on Statistical Education – JSM 2010
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The book and Nature essay did not have much impact compared with his laterclassic Laws of Form, but the questions Spencer-Brown raised still remainrelevant today.1.1 Philosophical Concerns About Classical ProbabilitySpencer-Brown attacked conventional probability from two angles. First, heattempted to demonstrate its philosophical contradictions and inadequatefoundation. This approach owed something to the influence of Wittgenstein. Oneespecially useful line of inquiry, according to Spencer-Brown, is the proper way todistinguish between ‘atomic’ and ‘molecular’ events. Classical probability focuseson the ‘atomic’ level. For example, if we throw a six-sided die 100 times, we treatthis as 100 independent events. To work out the likelihood of two successiveresults of ‘6’, we combine these ‘atomic’ events. But we do not, as a rule, makeobservations of ‘molecular’ events to see if their frequencies actually conform totheory. We are confident that for a fair die, the six sides will over a long span oftime come up equally often. This is thought to guarantee that over an even longerspan, all possible permutations on the ‘molecular’ level will do so as well.But this is begging the question, according to Spencer-Brown. It assumesindependence instead of proving it empirically. A non-classical theoreticalframework may give a different answer, one that fits the actual facts much better.By choosing to experiment and reason within the classical framework, we set upthe expectation of a certain kind of result.It was widely understood in the 1950’s that the state of the art in ‘chancemachines’ at that time was quite primitive. Mechanical methods like applying astrobe light to a spinning wheel necessarily involved many different risks of bias.In practice, any project of generating random numbers involved re-processingwhatever sequences were produced, by some kind of algorithm, and throwing outsome of the data. For example the first attempt by the RAND Corporation in 1955to publish a table of one million random digits involved extensive re-processing,as the original data set showed unacceptably large bias in variables as simple asthe balance between even and odd values. It was specifically noted by the RANDresearchers that the various biases evolved over time: ‘Apparently the machinehad been running down despite the fact that periodic electronic checks indicated ithad remained in good order.’This kind of problem would show up in any long series of machine-generated‘atomic’ events; the derived, ‘molecular’ outcomes would not show up in equalnumbers. There would be an observable bias, typically one that changed betweenthe beginning and the end of the run. The more complex the ‘molecular’ event, thegreater these biases tended to be.Section on Statistical Education – JSM 2010
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The philosophical perspective that probability is genuinely ‘atomic’ influencedwhat data researchers would do with these results. Because early ‘chancemachines’ were not able to produce truly unbiased data, the standard for genuinerandomness had to be set fairly low. Researchers gradually abandoned the effort topurge randomly generated sequences of all discernable bias, seeing this aspractically impossible and theoretically unnecessary. They settled instead formonitoring and controlling bias in the ‘atomic’ events, or at most for the verysimplest ‘molecular’ events. But what they could have done, according toSpencer-Brown, was to reconsider whether their concepts regarding randomnesswere correct, and to look more carefully at the raw output from the machines forclues about how randomness really works.There is no reason in principle why a series cannot gradually become less and lessbiased at the ‘atomic’ level, but remain biased on the various higher ‘molecular’levels for arbitrarily long spans.For example, in throwing a six-sided die it is theoretically possible to arrange theresults such that there are nearly equal numbers of results ‘1’ through ‘6’, and atthe same time a growing shortage of ‘11’ through ‘66’ relative to results like ‘25’or ‘34’. This particular effect has actually been observed by gamblers, andreproduced as part of the work described in this paper. Many similar kinds ofdecline in the rarer ‘molecular’ outcomes have also been observed as describedbelow.1.2 The Empirical Case in 1957There was a substantial body of evidence available to Spencer-Brown. Afternoting a variety of cases like those mentioned above in which ‘chance machines’produced a certain predictable pattern of bias similar to the ESP decline effect,Spencer-Brown proceeded to run his own series of experiments. These were of thegeneral ESP type, but without a human test subject, and showed the same result.For example, instead of having a subject guess the values of a deck of cards,Spencer-Brown proposed that we use a second deck of cards to simulate theguesses. The question of the subject growing fatigued or having an erratic ESPtalent is then moot, and the whole topic of ESP is irrelevant.These experiments pointed to a common anomaly: rare items would cluster nearthe start, then gradually grow rarer. The simplest way to demonstrate this trend,given the diverse range of experiments to be considered, is to compare quartiles.Even in a short test with a few hundred trials, the first quartile of the test will tendto have significantly more rare items (p < 0.05) than the last quartile. Criticsattacked the experimental aspect of Spencer-Brown’s work starting with theNature paper, but then a controlled test performed by a critic showed the sameresult. Section on Statistical Education – JSM 2010
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2. More  Recent Empirical Cases in Nonlinear ProbabilitySpencer-Brown’s theorizing did not produce much of a response. His non-classical, non-linear framework of probability was, so to speak, childless. But explaining failed ESPexperiments is far from the only application of his idea. There are dozens of what we mightcall ‘orphan’ laws in need of explanation, ad hoc empirical patterns that have been knownfor decades (or even centuries) and that remain outside the classical framework. The childlesstheory and the orphan empirical laws might yet form a family.Nonlinear probability is a broad term, really a matter of definition by negatives. It is not thefamiliar linear probability that is taught and used in every university. Nonlinear probabilitydistributions will not satisfy the usual criteria applied in probability work, such as conformityto the central limit theorem; nor will it exhibit the usual properties of linear systems.Nonlinear distributions are diverse, each case potentially sui generis.In nature, though, we find one outstandingly common pattern, across a broad range offields including species abundance, cellular metabolism, economics, epidemiology, Webtraffic, military history, voting, participation in religion, and much more. The commonpattern in this field is logarithmic decline in rare events with increasing set size, in themanner of the plot from Rhine (1940). The form of the decline when plotted on log-logaxes is a straight line.For example, take Smeed’s Law. This is a pattern governing traffic accident fatalities, firstobserved in 1949. Smeed observed that traffic fatalities per capita in different countriesdecrease in a very orderly way as the absolute number of drivers increases. The relation isa power law of the form p(fatality/year) = kNa, where N is the number of drivers, a isroughly 0.7, and k is a constant.The literature on Smeed’s Law, not very abundant, offers no convincing explanation forthis relationship. It is an ‘orphan’ law, an ad hoc observation that awaits integration intothe broad system of scientific knowledge.Another more recent example is the anomalous decline in participation by members ofonline communities. For example, take video sharing websites like YouTube. Most suchsites keep track of how many viewers have seen a particular item. They also allow viewersto submit a comment, or to press a button saying they like or dislike it. The near-universalpattern on such sites is for the rate of commenting to decline relative to the rate of viewing.As audiences grow from 10 viewers to 10,000 to 10 million, the rate of commenting plunges,typically from 10 percent to 1 percent to 0.1 percent or less. These dramatic swings ininterest are made even more mysterious because they are so orderly.The example below is from the Vimeo video sharing website in 2007. The video is knownas the ‘Flagpole Sitta Lip Dub’ and featured an office full of people singing along with apop song. It earned more than 400,000 views in its first six weeks. The participation rate asa percentage of cumulative viewers to date dropped in very orderly fashion. Two rates areshown, for people who wrote a comment, and those who pressed the ‘I like’ button.Section on Statistical Education – JSM 2010
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                                  Cumulative activity on the Flagpole Sitta lip dub, first 6 weeks0.1%1.0%10.0%1,000 10,000 100,000 1,000,000ViewsActivity Add commentAdd 'I like'The comments and ‘I like’ responses grow steadily rarer over the six-week debut of thevideo, falling so rapidly that the rate is noticeably different in the morning and the afternoonon any given day. This law of mass participation is of tremendous interest and practicalrelevance.Another highly interesting application is in epidemiology. One longstanding problem inthat field is how to know, at the start of an epidemic, what the mortality rate is likely to beover its course. The standard approach is to assume a stationary mean, or at most a series ofstationary means for different risk groups. That is, for adults 18-45 there will be an averagemortality rate that is observable at the beginning, middle, and end. The mortality rate mayvary for children or the elderly when considered separately, but these too will be stationaryaverages. Likewise for the transmission risk, or reproduction number R commonly used byepidemiologists.The historical record does not bear out these assumptions. For many diseases there isevidence of mortality falling between the start and end of an epidemic, as well as evidenceof declining transmission rates. The cases go back centuries.The standard epidemiological model is not of much help in such situations. A nonlinearprobability scheme can perhaps do better. The global H1N1 pandemic in 2009 offered achance to validate a log-log probability model.Section on Statistical Education – JSM 2010
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In May 2009, the first reports emerged from Mexico of an outbreak of the H1N1 virus thathad frighteningly high mortality rates. The medical personnel attending the first few dozencases were coming down with the disease, and Internet rumors claimed one or more hadalready died.The Mexican government and the World Health Organization issued initial statements aboutthe outbreak that were only a little less alarming than the rumors. But week by week, thepicture became more optimistic.Table 1: Selected falling mortality estimates for H1N1 pandemic, 2009Mortality Case count Date Issuing authority9.6 % 73 30 Apr 2009 WHO lab confirmations Mexico5.3 % 3,000 30 Apr 2009 Mexican government1.7 % 4,900 31 May 2009 WHO lab confirmations Mexico0.8 % 17,400 31 May 2009 WHO lab confirmations global1.4 % 8,300 30 Jun 2009 WHO lab confirmations Mexico0.7 % 52,000 30 Jun 2009 WHO lab confirmations global0.15 % 30 million 15 Aug 2009 U.S. Presidential Panel0.9 % Unknown Sep 2009 Media reports0.5 % Unknown Oct 2009 Malaysia0.02 % 22 million Nov 2009 Centers for Disease ControlThe spread of the epidemic also failed to live up to the first official forecasts.The original expectation was that H1N1 would spread until a billion people, or perhapsseveral billion, had caught it. This followed from the standard epidemiological assumptionof constant, stationary transmission rates. The only force that is recognized as restrainingspread of an epidemic (once it has escaped quarantine) is acquired immunity.Here, just as in the Vimeo video example, the behavior of the virus was noticeably differentfrom day to day. The points on the graph cover the period from April 27 through July 6.After that date, the WHO ceased to provide country-by-country coverage of specific casesand shifted to regional estimates. Even for the period covered by WHO bulletins, we canbe sure that the data increasingly understate the real transmission rate as more and morecases were going unrecorded. However, the trend is obviously not stationary. The final sizeof the epidemic (in early 2010) is unknown, but most likely between 100 and 200 millioncases. Section on Statistical Education – JSM 2010
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                        H1N1 daily transmission rates, 20090.1%1.0%10.0%100.0% 1 100 10,000 1,000,000Cumulative cases (WHO estimate)Daily percentage increase Official estimatelog-log trend linePrecisely why these declines occur, that is, the medical mechanisms involved, is beyondthe scope of this paper, but a promising lead is a measurable reduction in the ‘viral load’of later patients. The average number of viral particles per millilitre of blood is smallerfor successive cohorts. This reduces the severity of symptoms (lower mortality) as wellas  the efficiency of transmission.There are similar trends to be found in criminology, voter turnout, adoption of newproducts, religious participation, and dozens of other fields. Thus reviving Spencer-Brown’s 1957 project in 2010, and developing a general methodology of nonlinearprobability, is far from being an idle or purely mathematical diversion. If we canunderstand this decline process better, there are enormous practical benefits waiting.2. The Bayesian, Maximum-Entropy Framework of JaynesCoincidentally, in the same year that Spencer-Brown was suggesting that classicalprobability lacked a proper foundation and had unsolved empirical problems lying on allsides, the physicist Edwin Jaynes put forward a new framework in which a solutionSection on Statistical Education – JSM 2010
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could be found, the ‘principle of maximum entropy’. Here is how the principle isdescribed byWikipedia:Let some testable information about a probability distribution function be given.Consider the set of all trial probability distributions that encode this information. Then,the probability distribution that maximizes the information entropy is the trueprobability distribution with respect to the testable information prescribed.This is essentially a Bayesian approach to empirical problems in nonlinear probability. Inhis initial 1957 paper, Jaynes first proposed that lacking a detailed model, or when facedwith multiple possible dimensions of measurement for a complex system, one could use asa ‘prior’ for a given system whatever distribution maximizes uncertainty about the outcome.For a simple, classically linear case like an unbiased six-sided die, Jaynes noted that thelong-run maximum entropy distribution is the same as the classical distribution. Ouruncertainty about the outcome is maximized by setting the likelihoods for the six sidesequal to one another. There is thus no conflict between the two frameworks. At least,Jaynes believed there was none, in the long run. As it turns out, experimentally there is adifference. But this is good news for Jaynes and not so good news for the classical approach,as Jaynes’ approach is adaptable to the observed facts of decline.Moreover, for any more complex nonlinear case, lacking a detailed account of themechanism or a classically linear model, we are often at a loss how to proceed. We donot have even a plausible approximation. This is where Jaynes’ method offers supportand insight.One aspect of Jaynes’ work that is vital for our purposes is that there is no preferredperspective, no single way of looking at the data that qualifies as being causative in away that other perspectives are not. Thus we would not focus necessarily on the ‘atomic’sequence of individual throws of a die. It would be just as appropriate to characterize thesystem in terms of two-throw groups, or four-throw groups, or some other ‘molecular’configuration. The theory is not a theory of what is physically happening, so much as atheory of what observations we can hope to make of the system. One method of makingobservations is in principle much like another.This perspective helps to overcome the difficulties raised by Spencer-Brown in 1957,about experimenters throwing out significant patterns of behavior by their ‘chancemachines’. Section on Statistical Education – JSM 2010
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4. Basic Procedure for Testing for Decline in ‘Chance Machines’To properly assess whether a given ‘chance machine’ exhibits decline requiressome novel test procedures and a different perspective on what data are to be keptor thrown out. Here are some key points:1. Careful study must be made of the apparatus and its possibilities forcompound or ‘molecular’ events. These exist along two dimensions. Asingle die thrown multiple times yields sequential compounds like ‘11’ and‘34’. Two dice thrown together yield simultaneous compounds as well assequential ones. Dice or coins or cards should always be distinguishable,so that for example if a red die and a blue die are thrown together, thesequential compounds for the red die can be identified as distinct fromthose for the blue die.Some experiments will have to be done with a person in the loop. Forexample, a slot machine in which the precise moment that the lever ispulled influences the random number selection process. In such cases wemust consider each subject-machine combination to be a distinctapparatus. Decline will occur for each combination. If multipleexperimenters play the same machine, their results must be distinguishedin the analysis.The apparatus should also be studied for its axes of internal symmetry.These turn out to be quite numerous and relevant. For example, anAmerican roulette wheel has 38 spaces. Because of symmetry, we can alsothink of the wheel as evenly divided into 19 ‘double’ spaces, taking twoadjacent spaces as one. European roulette wheels only have 37 spaces andso lack this internal symmetry. When determining the odds of compoundevents and their relative rarity, this kind of internal symmetry can have alarge impact, particularly because of rule #2 below.2. The rarer the item in nominal, classical terms, the greater the surplus willgenerally be at the start, and the longer the series must be beforeoccurrences of the item slip below the classical expectation. The length ofthe sequence needed to exhaust the surplus is roughly proportional to theodds of the event. Thus if the apparatus is a pair of brand-new dice, andthe test is for occurrences of ‘doubles,’ then the surplus of doubles willusually be exhausted after several hundred throws. If the apparatus is threedice, and the test is for occurrence of ‘triples,’ the surplus will take longerto exhaust, perhaps thousands of throws instead of hundreds.3. Every trial, especially early trials, must be recorded. The more usualpractice with a newly constructed or acquired random number generator isto ‘run it in,’ and not to start sampling data until many hundreds orSection on Statistical Education – JSM 2010
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thousands of results have been generated. This will undermine the purposeof the experiment, as it will not only limit the study to data from the later,much slower period of decline, when rare items have already becomemuch rarer, but itwill also render moot the full size of the set of results.Failure to do this will not make the tests useless, merely limited. Forexample, in one early test, some exploratory experiments were done with a12-sided die but not fully recorded. Then a long series of 1,500 throws wasmade looking for repeats. As expected, the series of 1,500 throws under-repeated. The rare event of a repeat had already declined below theclassical level, so that only 97 repeats (p < 0.005) were obtained. It wouldclearly have been better, however, if the result in this case could have beencompared with the early part of the run in which repeats were moreplentiful.4. Trends should be evaluated cumulatively. Because our hypothesis is thatthe system is accumulating entropy, the variable of greatest interest is therate of rare occurrences over the full set of results. As they become rarer,these events effectively increase the overall entropy of the system.This rule of evaluation in cumulative context contrasts strongly with thestate of the art in random number generation at present. The suite ofDIEHARD tests endorsed by the National Institute for Standards andTesting (NIST) works on arbitrarily sampled blocks of data, typically1,000 bits in length, to determine if there are, for example, too many longstrings of 111111 or 000000.Unfortunately, a proper test can only be donecontextually, not in relation to the string’s immediate neighborhood but inrelation to the whole output history of the RNG to date. Thus standardtesting regimes are not suited to finding the phenomenon under study here.This is important because declines do show up in purely digital random-number generation schemes. In one case, several years of output from abrand-new Keno game based on a digital RNG was found to exhibitsignificant long-run bias—not of a kind that players could exploit to winthe game, but of a kind that conformed to the decline hypothesis and thatought to raise doubts about the stability of the algorithm. If a testprocedure never considers long-run trends of this kind, then long-runstability issues can scarcely be discussed.It is important as well because simulations of physical games often exhibitthe same kind of decline as the physical game itself. A deck of 25 cardswith five symbols, when shuffled, should yield an average of four ‘repeats’per shuffle, in which successive cards have the same symbol. Digitallysimulated decks using a spreadsheet show a small but significant decline,Section on Statistical Education – JSM 2010
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as do actual decks. Here is the cumulative plot of decline in a simulateddeck shuffled 3,000 times:                 Declining neighbor pairs in 25-card Zener deck 97%100%103%106%109%112%115% 10 100 1,000 10,000Cumulative shufflesPairs (compared to classical) ActualTrend lineClassicalThe net shortage after 3,000 shuffles was 213 missed repeats, or 1.8percent. This was hardly something that would be noticed casually, but itwas significant.5. Apart from graphing the data cumulatively, another handy standard formatfor comparison is by quartiles. This was common practice in ESP studiesin the early 20th century and it remains very useful today. Whether the dataconsist of a few hundred dice throws, or a few hundred thousand ‘I like’responses from viewers of a video, a comparison of quartiles should yielda common pattern. The difference between the first and fourth quartileswill generally be the largest. The exact difference will depend on theparticular apparatus and the rare items being tracked.Section on Statistical Education – JSM 2010
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5. Summary of Recent TestingThe purpose of testing conducted between 2003 and 2009 was to extend the range ofdifferent ‘chance machines’ considered, beyond the fairly limited number thatSpencer-Brown tried. Virtually all of these have generated significant (p < 0.05)declines of the expected kind. In every category there has been third-party datagenerated prior to the experiment, sometimes in great quantity, that also showed thesame type of decline.— 4-sided, 6-sided, 8-sided, 10-sided, 12-sided, and 20-sided dice— decks of cards (52-card, 25-card Zener, multi-deck Baccarat, custom decks)— simulated decks of cards (all the same types above)— coins (spun on a table or flipped in the air, singly or in groups)— digital Keno games (online and in casinos)— roulette wheels (in casinos and using smaller replicas)— slot machines (casino, online, PC software simulator)The significance of the results will vary. Occasionally the difference will onlyyield p < 0.10, or even p < 0.20. Differences of p < 0.05 to p < 0.01 are quitecommon. Extremely large differences of p < 0.00001 or smaller have occurrednumerous times.Typically the decline is not large enough to overcome the house edge in any gameof chance. Sometimes the decline is striking but not really relevant to the game.For example, a 2 percent shortage of pairs in an eight-deck blackjack shoe will notgive either the house or the player any sort of meaningful advantage, despite theoverall house edge being smaller than 2 percent.In preparing this paper I am conscious of the extreme skepticism that is likely tobe brought to bear by readers on any challenge to classical probability.It should be kept firmly in mind that the strength of the argument for decline doesnot lie in any one test having high significance, but rather in the difficulty offinding ‘chance machines’ that  do not exhibit decline. A dozen experiments usingdifferent apparatus, half of them based on data collected by third parties, eachwith an expectation of zero long-run bias, each with decline of significance p <0.1, constitute a more compelling argument than a single wildly improbable result.A hundred such experiments are, for me at least, enormously provocative.Also, as I have tried to show, ultimately the motive for investigation is not simplyto revisit half-century-old concerns about the classical model being wrong, but toacknowledge the present challenges that we face in interpreting and plotting awealth of highly relevant phenomena, like Web traffic and the spread of H1N1virus. Section on Statistical Education – JSM 2010
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These experiments, if done correctly, can only end by strengthening ourunderstanding of probability. I hope that readers will be encouraged to pursue thetopic on their own. Ultimately, science needs to understand this, wherever it mightlead, and whatever ‘sacred cows’ it might gore along the way.AcknowledgementsI would like to thank Milo Schield of Augsburg College, who chaired our session atJSM 2010. Milo has offered great encouragement for my work over the years and Iam grateful for the invitation to speak.The 90 or so mathematicians in attendance at the talk (at 8:30 on a Monday morning)came up with a number of good questions afterward and I thank them for their livelyinterest in the subject. ReferencesJaynes, E. T. (1957). “Information Theory and Statistical Mechanics”. Physical ReviewSeries II 106 (4): 620–630. doi:10.1103/PhysRev.106.620. MR87305Rhine, J. B. Extra-Sensory Perception After Sixty Years (1940)Spencer-Brown, G. Probability and Scientific Inference (1957)Thouless, R. From anecdote to experiment in psychical research (1972)Section on Statistical Education – JSM 2010
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