Schematically we could assign a number value to any pattern happening along any shoe dealt; for some reasons we decided to cut off from the registration a fixed percentage of starting patterns considered as neutral.
Each pattern gets a given number in relationship of its lenght considered in form of isolated single/streak appearance and clustered streak/single appearance.
Numbers move within the 0-3 range, meaning that 0 is no consecutiveness, 1 is one consecutive pattern, 2 is two consecutive patterns and 3 or 3+ clustered situations are always considered as 3.
Let's make an example, three real live shoes.
First shoe presented a 1-0-1-1-1-3-2-2-(1); the final total number was 11.
Second shoe went as 2-1-2-0-1-2-0-(1), that is a 9 final number.
Third shoe produced a 2-0-0-0-2-0-0-1-1-0-1-0-3-1-0 succession, a 11 final number.
But notice what happened right after any given number at this shoe sample.
0= 1, 1, (1), 0, 0, 2, 0, 1, 1, 3.
1= 0, 1, 1, 3, 2, 2.
2= 2, (1), 1, 0, 0, 0
3= 2, 1
Despite of the strong shifted ratio (0=7 and any number different than 0=17), 0-1 clusters seem to overcome the 0-1 isolated counterpart, yet there are important features to take of about what happens next after a 2 or 3 scenario.
More live shoes:
1-1-0-2-0-0-0-1-0-1-0-2-3-1
0= 2, 0, 0, 1, 2
1= 1, 0, 0, 0
2= 0, 3
3= 1
0-1-2-0-0-0-3-2-0-2-0-0-0-0-1-0-1
0= 1, 0, 0, 3, 2, 0, 0, 0, 1, 1.
1= 2, 0
2= 0, 0, 0
3= 2
2-2-2-0-1-1-0-2-1-0-0-(2)
0= 1, 2, 0, (2)
1= 1, 0, 0
2= 2, 2, 0, 1
3= not applicable
2-0-3-0-3-3-0-1
0= 3, 3, 1
1= NA
2= 0
3= 0, 3, 0
0-1-2-0-0-0-1-1-2-0-0-0-0-2-1
0= 1, 0, 0, 1, 0, 0, 0, 2
1= 2, 1, 2
2= 0, 0, 1
3= NA
1-2-0-3-0-1-3-0-(1)
0= 3, 1, (1)
1= 2, 3
2= 0
3= 0, 0
0-1-2-3-1-3-3
0= 1
1= 2, 3
2= 3
3= 1,3
3-0-0-1-0-1-1-0-2-2-3-0-0
0= 0, 1, 1, 2, 0
1= 0, 1, 0
2= 2, 3
3= 0
3-0-1-0-0-3-0-3-1-(2)
0= 1, 0, 3, 3
1= 0, (2)
2= na
3= 0, 0, 1
0-0-2-0-1-0-1-0-1-0-0-0-1-0-0-0-0-0-0-0-2
0= 0, 2, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2
1= 0, 0, 0, 0
2= 0
3= NA
0-1-1-0-2-0-0-0-2-0-3-(1)
0= 1, 2, 0, 0, 2, 3
1= 1, 0
2= 0, 0
3= (1)
3-3-0-0-0-0-2-3-2-(1)
0= 0, 0, 0, 2
1= NA
2= 3-(1)
3= 3, 2
3-0-0-2-0-1-1-2-0-0-0-0-1
0= 0, 2, 1, 0, 0, 0, 1.
1= 1, 2
2= 0, 0
3= NA
3-0-0-2-2-0-1-1-2-1-2-(1)
0= 0, 2, 1
1= 1, 2, 2
2= 2, 0, 1, (1)
3= 0
1-1-0-0-0-0-0-3-0-1-1-1-1-0-0-0-(2)
0= 0, 0, 0, 0, 3, 1, 0, 0, (2)
1= 1, 0, 1, 1, 1, 0
2= NA
3= 0
0-0-3-1-0-1-3-1-0-1-0-0-1-3-0-(2)
0= 0, 3, 1, 1, 0, 1, (2)
1= 0, 3, 0, 0, 3
2= NA
3= 1, 1, 0
0-0-0-0-3-0-0-0-0-0-3-0-2-3
0= 0, 0, 0, 3, 0, 0, 0, 0, 3, 2
1= NA
2= 3
3= 0, 0
2-0-0-0-0-0-0-0-0-0-3-0-0-0-0-0-3-1-0-1-(1)
0= 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 1
1= O, (1)
2= NA
3= 0, 1
0-1-0-1-1-0-0-0-1-0-1-0-0-1-3-0-0-0-0
0= 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0
1= 0, 1, 0, 0, 0, 3
2= NA
3= 0
0-1-1-0-0-2-0-3-0-2-0
0=1, 0, 2, 3, 2
1= 1, 0
2= 0, 0
3= 0
1-0-1-0-1-2-0-0-3-1-0-0-0-0-0-0-(2)
0= 1, 1, 0, 3, 0, 0, 0, 0, 0, (2)
1= 0, 0, 2, 0
2= 0
3= 1
1-2-2-0-3-0-1-3-1-1
0= 3, 1
1= 2, 3, 1
2= 2,0
3= 0, 1
0-0-0-3-0-2-1-0-3-2-3
0= 0, 0, 3, 2, 3
1= 0
2= 1, 3
3= 0, 2
1-0-1-3-0-0-0-0-3-1-0-0-0-0-0-(1)
0= 1, 0, 0, 0, 3, 0, 0, 0, 0,(1)
1= 0, 3, 0
2= NA
3= 0, 1
1-0-3-2-0-3-1-0-3-0
0= 3, 3, 3
1= 0, 0
2= 0
3= 2, 1, 0
0-3-0-0-0-1-1-2-3
0= 3, 0, 0, 1
1= 1, 2
2= 3
3= 0
1-2-3-1-1-0-0-1-0-2-0-(1)
0= 0, 1, 2, (1)
1= 2, 1, 0, 0
2= 3, 0
3= 1
0-0-2-1-1-0-0-3-0-3
0= 0, 2, 0, 3, 3
1= 1, 0
2= 1
3= 0
1-3-0-1-2-0-0-1-0-1-(2)
0= 1, 0, 1, 1
1= 3, 2, 0, (2)
2= 0
3= 0
0-1-0-0-0-0-1-1-3-0-0-2-0-0-1
0= 1, 0, 0, 0, 1, 0, 2
1= 0, 1, 3
2= 0
3= 0
There are several ways to exploit such sub successions, think about how many "NA" spots happened, meaning that at an interesting part of shoes dealt one pattern hasn't the room to be properly assessed by a back-to-back scenario. As it simply didn't happen.
as.
Each pattern gets a given number in relationship of its lenght considered in form of isolated single/streak appearance and clustered streak/single appearance.
Numbers move within the 0-3 range, meaning that 0 is no consecutiveness, 1 is one consecutive pattern, 2 is two consecutive patterns and 3 or 3+ clustered situations are always considered as 3.
Let's make an example, three real live shoes.
First shoe presented a 1-0-1-1-1-3-2-2-(1); the final total number was 11.
Second shoe went as 2-1-2-0-1-2-0-(1), that is a 9 final number.
Third shoe produced a 2-0-0-0-2-0-0-1-1-0-1-0-3-1-0 succession, a 11 final number.
But notice what happened right after any given number at this shoe sample.
0= 1, 1, (1), 0, 0, 2, 0, 1, 1, 3.
1= 0, 1, 1, 3, 2, 2.
2= 2, (1), 1, 0, 0, 0
3= 2, 1
Despite of the strong shifted ratio (0=7 and any number different than 0=17), 0-1 clusters seem to overcome the 0-1 isolated counterpart, yet there are important features to take of about what happens next after a 2 or 3 scenario.
More live shoes:
1-1-0-2-0-0-0-1-0-1-0-2-3-1
0= 2, 0, 0, 1, 2
1= 1, 0, 0, 0
2= 0, 3
3= 1
0-1-2-0-0-0-3-2-0-2-0-0-0-0-1-0-1
0= 1, 0, 0, 3, 2, 0, 0, 0, 1, 1.
1= 2, 0
2= 0, 0, 0
3= 2
2-2-2-0-1-1-0-2-1-0-0-(2)
0= 1, 2, 0, (2)
1= 1, 0, 0
2= 2, 2, 0, 1
3= not applicable
2-0-3-0-3-3-0-1
0= 3, 3, 1
1= NA
2= 0
3= 0, 3, 0
0-1-2-0-0-0-1-1-2-0-0-0-0-2-1
0= 1, 0, 0, 1, 0, 0, 0, 2
1= 2, 1, 2
2= 0, 0, 1
3= NA
1-2-0-3-0-1-3-0-(1)
0= 3, 1, (1)
1= 2, 3
2= 0
3= 0, 0
0-1-2-3-1-3-3
0= 1
1= 2, 3
2= 3
3= 1,3
3-0-0-1-0-1-1-0-2-2-3-0-0
0= 0, 1, 1, 2, 0
1= 0, 1, 0
2= 2, 3
3= 0
3-0-1-0-0-3-0-3-1-(2)
0= 1, 0, 3, 3
1= 0, (2)
2= na
3= 0, 0, 1
0-0-2-0-1-0-1-0-1-0-0-0-1-0-0-0-0-0-0-0-2
0= 0, 2, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2
1= 0, 0, 0, 0
2= 0
3= NA
0-1-1-0-2-0-0-0-2-0-3-(1)
0= 1, 2, 0, 0, 2, 3
1= 1, 0
2= 0, 0
3= (1)
3-3-0-0-0-0-2-3-2-(1)
0= 0, 0, 0, 2
1= NA
2= 3-(1)
3= 3, 2
3-0-0-2-0-1-1-2-0-0-0-0-1
0= 0, 2, 1, 0, 0, 0, 1.
1= 1, 2
2= 0, 0
3= NA
3-0-0-2-2-0-1-1-2-1-2-(1)
0= 0, 2, 1
1= 1, 2, 2
2= 2, 0, 1, (1)
3= 0
1-1-0-0-0-0-0-3-0-1-1-1-1-0-0-0-(2)
0= 0, 0, 0, 0, 3, 1, 0, 0, (2)
1= 1, 0, 1, 1, 1, 0
2= NA
3= 0
0-0-3-1-0-1-3-1-0-1-0-0-1-3-0-(2)
0= 0, 3, 1, 1, 0, 1, (2)
1= 0, 3, 0, 0, 3
2= NA
3= 1, 1, 0
0-0-0-0-3-0-0-0-0-0-3-0-2-3
0= 0, 0, 0, 3, 0, 0, 0, 0, 3, 2
1= NA
2= 3
3= 0, 0
2-0-0-0-0-0-0-0-0-0-3-0-0-0-0-0-3-1-0-1-(1)
0= 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 1
1= O, (1)
2= NA
3= 0, 1
0-1-0-1-1-0-0-0-1-0-1-0-0-1-3-0-0-0-0
0= 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0
1= 0, 1, 0, 0, 0, 3
2= NA
3= 0
0-1-1-0-0-2-0-3-0-2-0
0=1, 0, 2, 3, 2
1= 1, 0
2= 0, 0
3= 0
1-0-1-0-1-2-0-0-3-1-0-0-0-0-0-0-(2)
0= 1, 1, 0, 3, 0, 0, 0, 0, 0, (2)
1= 0, 0, 2, 0
2= 0
3= 1
1-2-2-0-3-0-1-3-1-1
0= 3, 1
1= 2, 3, 1
2= 2,0
3= 0, 1
0-0-0-3-0-2-1-0-3-2-3
0= 0, 0, 3, 2, 3
1= 0
2= 1, 3
3= 0, 2
1-0-1-3-0-0-0-0-3-1-0-0-0-0-0-(1)
0= 1, 0, 0, 0, 3, 0, 0, 0, 0,(1)
1= 0, 3, 0
2= NA
3= 0, 1
1-0-3-2-0-3-1-0-3-0
0= 3, 3, 3
1= 0, 0
2= 0
3= 2, 1, 0
0-3-0-0-0-1-1-2-3
0= 3, 0, 0, 1
1= 1, 2
2= 3
3= 0
1-2-3-1-1-0-0-1-0-2-0-(1)
0= 0, 1, 2, (1)
1= 2, 1, 0, 0
2= 3, 0
3= 1
0-0-2-1-1-0-0-3-0-3
0= 0, 2, 0, 3, 3
1= 1, 0
2= 1
3= 0
1-3-0-1-2-0-0-1-0-1-(2)
0= 1, 0, 1, 1
1= 3, 2, 0, (2)
2= 0
3= 0
0-1-0-0-0-0-1-1-3-0-0-2-0-0-1
0= 1, 0, 0, 0, 1, 0, 2
1= 0, 1, 3
2= 0
3= 0
There are several ways to exploit such sub successions, think about how many "NA" spots happened, meaning that at an interesting part of shoes dealt one pattern hasn't the room to be properly assessed by a back-to-back scenario. As it simply didn't happen.
as.