Patterns
The baccarat invulnerability relies upon the fact that it's impossible to 'restrict' the variance terms of the results, meaning that anything could happen anytime and anywhere.
In statistical terms this means that the 'improbable', even though being carefully calculated, will surely happen providing to get a fair amount of trials.
So after an 'infinite' amount of shoes we'll surely face an all B or P hand shoe or a whole BP chopping shoe or, well more likely, a whole 'streaky' shoe without any single showing up. (Btw, we have crossed through this last situation more than once).
Anyway to get an idea about how's unlikely to get some 'negative' patterns for long, consider this simple mechanical and progressive betting plan.
Notice that we're not saying it's a sure way to beat baccarat, just that these random walks will disrespect the unbeatable features belonging to a typical random walk as they are more prone to roam around the 0 point or taking a given univocal direction (no matter which side we'll bet at).
Our random walk #1 will bet toward singles and doubles after any 3+ streak happened (that is any 3 or 3+ streak happening at either side), so 'hoping' that such streak will come out more isolated than clustered or that 'isolated' streaks will come out more clustered than isolated (see later).
If any 3+ streak comes out clustered (back-to-back) we simply stop our betting, waiting for another 3+ streak occurrence.
Beside the obvious first-step progressive betting scheme after a single apparition was missed (otherwise a second winning Banker bet would get us losers for the vig), we'll raise our standard bet in two occasions:
- after a winning bet in either one of the two steps (at least up to the point to erase a previous deficit) and
- after a single losing two-step bet.
No need to try to erase a previous deficit too fast, it's casinos' hope to know that sometimes sh.i.t happens for long (in either way), let shoes to be dealt and those random walks cannot get negative values too distant from the 0 point.
Obviously we should consider that every bet will be burdened by a math EV- return.
Then our random walk #2 is more patient as it'll act just when two 3+ consecutive streaks had happened, the same target being singles and/or doubles.
Same progressive features to be utilized.
Actual long term results of such plan at real live shoes
Both random walks #1 and #2 get a common 'enemy': that is series of three or more consecutive 3+ streaks.
Actually those situations will surely come out but they cannot neglect for long the more likely propensity to show up as isolated as an average live card distribution (being dependent of the previous results and surely finite) will make some limits over their back-to-back apparition at the same shoe.
If you'd test a relatively large sample of live shoes, you'll see that, more often than not, just one of the two random walks will take a decisive positive line as 'complex' patterns will take a huge amount of trials to show up a possible propensity working at both random walks.
Is this big.horn.stuff stuff as many fkng mathematicians will surely bet their as..ses upon?
Ok, so let's take the casino's part.
A sky's the limit progressive player will first bet that A (a+b) will be more likely than B (c) by wagering that A-A and B-A will be more likely to show up than A-B and B-B. (Of course from a theorical point of view a+b=c).
So casino must hope results will take a c clustered line.
But say the same player had noticed that A is more likely to come out by rarer B clusters of two that seem to be prevalent than isolated B (so c>a+b but c-c<a+b) , so now casino must hope to get c-c-c clustered patterns than c-c spots distributed by more likely lines.
Hence this player wouldn't give a fk about random walk #1, just more focusing about his/her higher bets by following random walk #2.
Now this casino should hope to deal shoes presenting a lot of either A-B or B-B spots (r.w. #1) or B-B-B spots in a row not intervaled by more likely B-B-A patterns (r.w. #2).
BTW, it's a sure long term finding that the more 3+s streaks are clustered, better are the odds to cross through single/double patterns in the remaining part of the shoe.
A thing we'll look at the next week.
as.
The baccarat invulnerability relies upon the fact that it's impossible to 'restrict' the variance terms of the results, meaning that anything could happen anytime and anywhere.
In statistical terms this means that the 'improbable', even though being carefully calculated, will surely happen providing to get a fair amount of trials.
So after an 'infinite' amount of shoes we'll surely face an all B or P hand shoe or a whole BP chopping shoe or, well more likely, a whole 'streaky' shoe without any single showing up. (Btw, we have crossed through this last situation more than once).
Anyway to get an idea about how's unlikely to get some 'negative' patterns for long, consider this simple mechanical and progressive betting plan.
Notice that we're not saying it's a sure way to beat baccarat, just that these random walks will disrespect the unbeatable features belonging to a typical random walk as they are more prone to roam around the 0 point or taking a given univocal direction (no matter which side we'll bet at).
Our random walk #1 will bet toward singles and doubles after any 3+ streak happened (that is any 3 or 3+ streak happening at either side), so 'hoping' that such streak will come out more isolated than clustered or that 'isolated' streaks will come out more clustered than isolated (see later).
If any 3+ streak comes out clustered (back-to-back) we simply stop our betting, waiting for another 3+ streak occurrence.
Beside the obvious first-step progressive betting scheme after a single apparition was missed (otherwise a second winning Banker bet would get us losers for the vig), we'll raise our standard bet in two occasions:
- after a winning bet in either one of the two steps (at least up to the point to erase a previous deficit) and
- after a single losing two-step bet.
No need to try to erase a previous deficit too fast, it's casinos' hope to know that sometimes sh.i.t happens for long (in either way), let shoes to be dealt and those random walks cannot get negative values too distant from the 0 point.
Obviously we should consider that every bet will be burdened by a math EV- return.
Then our random walk #2 is more patient as it'll act just when two 3+ consecutive streaks had happened, the same target being singles and/or doubles.
Same progressive features to be utilized.
Actual long term results of such plan at real live shoes
Both random walks #1 and #2 get a common 'enemy': that is series of three or more consecutive 3+ streaks.
Actually those situations will surely come out but they cannot neglect for long the more likely propensity to show up as isolated as an average live card distribution (being dependent of the previous results and surely finite) will make some limits over their back-to-back apparition at the same shoe.
If you'd test a relatively large sample of live shoes, you'll see that, more often than not, just one of the two random walks will take a decisive positive line as 'complex' patterns will take a huge amount of trials to show up a possible propensity working at both random walks.
Is this big.horn.stuff stuff as many fkng mathematicians will surely bet their as..ses upon?
Ok, so let's take the casino's part.
A sky's the limit progressive player will first bet that A (a+b) will be more likely than B (c) by wagering that A-A and B-A will be more likely to show up than A-B and B-B. (Of course from a theorical point of view a+b=c).
So casino must hope results will take a c clustered line.
But say the same player had noticed that A is more likely to come out by rarer B clusters of two that seem to be prevalent than isolated B (so c>a+b but c-c<a+b) , so now casino must hope to get c-c-c clustered patterns than c-c spots distributed by more likely lines.
Hence this player wouldn't give a fk about random walk #1, just more focusing about his/her higher bets by following random walk #2.
Now this casino should hope to deal shoes presenting a lot of either A-B or B-B spots (r.w. #1) or B-B-B spots in a row not intervaled by more likely B-B-A patterns (r.w. #2).
BTW, it's a sure long term finding that the more 3+s streaks are clustered, better are the odds to cross through single/double patterns in the remaining part of the shoe.
A thing we'll look at the next week.
as.